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 Abstract: Background: Generating a large number of compounds using combinatorial methods 
increases the possibility of finding novel bioactive compounds. Although some combinatorial structure 
generation algorithms are available, any method for generating structures from activity-linked 
substructural topological information is not yet reported. 

Objective: To develop a method using graph-theoretical techniques for generating structures of 
antitubercular compounds combinatorially from activity-linked substructural topological information, 
predict activity and prioritize and screen potential drug candidates.   

Methods: Activity related vertices are identified from datasets composed of both active and inactive or, 
differently active compounds and structures are generated combinatorially using the topological 
distance distribution associated with those vertices. Biological activities are predicted using topological 
distance based vertex indices and a rule based method. Generated structures are prioritized using a 
newly defined Molecular Priority Score (MPS).  

Results: Studies considering a series of Acid Alkyl Ester (AAE) compounds and three known anti-
tubercular drugs show that active compounds can be generated from substructural information of other 
active compounds for all these classes of compounds. Activity predictions show high level of success 
rate and a number of highly active AAE compounds produced high MPS score indicating that MPS 
score may help prioritize and screen potential drug molecules. A possible relation of this work with 
scaffold hopping and inverse Quantitative Structure-Activity Relationship (iQSAR) problem has also 
been discussed. 

Conclusion: The proposed method seems to hold promise for discovering novel therapeutic candidates 
for combating Tuberculosis and may be useful for discovering novel drug molecules for the treatment 
of other diseases as well. 
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1. INTRODUCTION 

The need for new drugs to combat diseases and to cater 
to increasing plethora of resistant infections is clinching 
towards an urgent situation. This demand can possibly be 
satisfied through the discovery of novel bioactive 
compounds that remain underexplored in the traditional drug 
discovery pipeline. Several efforts have already been made 
in this direction. For example, Ruddigkeit et al. [1] have 
built a data base of all possible compounds of 17 atom size 
made from C, N, O, S and halogens. While such an effort of 
finding a suitable drug candidate out of several billions of 
compounds is certainly a useful endeavour, it is felt to use 
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serendipity intuitively, instead, to search a relatively smaller 
set of molecules that is exhaustive with respect to the defined 
limits, activity linked and is rationally guided as well may 
have higher chances of success and may help accelerate the 
drug discovery process. 

Current drug discovery pipelines seek to search for new 
bioactive compounds mainly using data modelling and 
activity prediction [2-4], through 3D virtual High 
Throughput Screening (vHTS) using molecular docking and 
scoring studies [5], and by carrying out 3D Quantitative 
Structure-Activity Relationship (QSAR) studies [6]. To 
enhance the chances of discovery, chemical diversity of 
combinatorial compounds is enforced and approaches that 
can generate structures having different scaffolds in the 
sense of scaffold hopping [7] may be preferable which offers 
drug designers wider options for looking at diverse 
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molecular structures. This may be particularly useful in 
designing novel bioactive compounds for emerging 
challenges such as for discovering novel antitubercular 
agents [8] and for handling drug resistance problems [9]. 

Molecular topology-based approaches are most suitable 
for generating and guiding the design of novel molecular 
structures [10, 11] and graph theoretical methods [12] have 
been found to be most useful for serving the purpose. 
However, existing methods are primarily used as engines for 
generating structures with no connection to their biological 
activities unless subjected to separate activity prediction 
studies. Therefore, a method that de novo generates 
compounds combinatorially in such a way that they get 
linked to their activities automatically may better help the 
drug discovery effort and may bring down the number of 
structures to be generated, helping accelerate the process. 
Presumably, use of topological molecular descriptors [2] and 
the associated connectivity information can be helpful in this 
regard. Moreover, doing that using a single molecular / 
substructural descriptor that is used for activity prediction 
too may be even a simpler method and linked to inverse 
QSAR (iQSAR) [13] approach which is another interesting 
area of research in terms of getting structures back from 
quantitative molecular descriptors. Therefore, an integrated 
method that can be used for generating structures of diverse 
topological architecture / scaffold from a single molecular 
(structural or, substructural) descriptor de novo coupled with 
activity prediction and prioritization and screening of 
potentially active compounds may be an attractive approach 
for designing / discovering novel drug candidates.  

The present work is aimed at developing an integrated 
method and the corresponding algorithms (computer 
programs with different modules) that can be used for 
activity-linked combinatorial drug design based primarily on 
graph-theoretical techniques, predict activities and prioritize 
and screen potential drug candidates. Activity–linked 
combinatorial structure generation is the most important part 
of this approach and we have leveraged a non-isomorphic 
rooted tree generation algorithm [14] and a cycle 
enumeration method [15] to design novel compounds in the 
form of reconstructed molecular graphs as outlined earlier 
[16, 17]. Activity prediction is done using a rule-based 
method [16, 17] and compounds are prioritized using a 
newly defined “Molecular Priority Score (MPS)”. 

In order to investigate the usefulness of the proposed 
integrated method with special emphasis on antitubercular 
drug discovery, we have carried out studies with a series of 
41 antitubercular Acid Alkyl Ester (AAE) derivatives [18] 
and three known antitubercular drugs - Isoniazid, 
Pyrazinamide and Ethionamide - in a drug resistance 
scenario. The method has been able to predict the activities 
of AAE derivatives with a high percentage of success rate. 
Regarding structure generation / reconstruction, we have 
been able to reconstruct structures of some active AAE 
compounds from the substructural information associated 
with activity related vertices of other active AAE compounds 
using the corresponding algorithm. Moreover, several highly 
active compounds have been prioritized by MPS showing the 
usefulness of MPS in screening potential antitubercular drug 
molecules. For the AAE series, we have also reported some 

validation results related to activity prediction in terms of 
‘accuracy’, ‘sensitivity’ and ‘specificity’ that shows the 
usefulness of the vertex index and the method used. In 
studies with three known antitubercular drugs, mentioned 
above, the structure generation has been done by relaxing 
distance constraint in getting the structure of one of the 
compounds which is not drug resistant from the distance 
distribution information associated with the activity related 
vertex of another compound which is resistant to 
tuberculosis. It appears from the results obtained from this 
study that the proposed method may find useful applications 
in discovering novel antitubercular drugs and to overcome 
drug resistance problem such as that for the treatment of 
tuberculosis [19]. The method seems to have the potentiality 
to emerge as a useful drug discovery tool for other diseases 
as well.  

2. MATERIALS AND METHODS  

The proposed integrated method has three components in 
a broader sense – (1) prediction of activity from 
substructural information; (2) generation of chemical 
structures from substructural information and conversion to 
SMILES notation; and (3) prediction of activity of the 
compounds  obtained from the generated structures for a 
biological end-point of interest followed by compound 
prioritization and screening. Topological substructural 
information is the basis for carrying out these studies and a 
vertex index (𝐷!), the distance exponent index [20], has 
been used for that purpose. The index  𝐷! helps to consider 
the connectivity properties of the atoms situated in the closer 
neighbourhood of a given atom more with a negative 
exponent value. Since 𝐷! index having 𝑥 =  −4 i.e., 𝐷!! 
index has been found to be useful in predicting activities for 
different series of bioactive compounds [18, 20, 21], we have 
chosen to use this index for the present study.  

2.1. Computation of Vertex Index and Activity Prediction 

The computation of 𝐷!! index has been illustrated by 
considering the molecular graph 𝐺 of the carbon skeleton of 
pentane and the corresponding distance matrix 𝐷(𝐺) shown 
in Fig. (1).  

        𝐺:     ●1-●2-●3-●4-●5 
  1 2 3 4 5 

 1 0 1 2 3 4 
 2 1 0 1 2 3 

𝐷(𝐺): 3 2 1 0 1 2 

 4 3 2 1 0 1 
 5 4 3 2 1 0 

 
Fig. (1). Graph 𝐺 representing carbon skeleton of the straight chain 
isomer of pentane and the corresponding vertex labelled distance 
matrix 𝐷(𝐺). 
 

Therefore, 𝐷!! index for the five vertices 𝑣!, 𝑖  =
 1, 2,… , 5 of 𝐺 may be computed as: 

𝐷!! 𝑣! =  1!! + 2!! + 3!! + 4!! = 1.0787 
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𝐷!! 𝑣! =  1!! + 1!! + 2!! + 3!! = 2.0748 
𝐷!! 𝑣! =  1!! + 1!! + 2!! + 2!! = 2.1250 
𝐷!! 𝑣! =  1!! + 1!! + 2!! + 3!! = 2.0748 
𝐷!! 𝑣! =  1!! + 2!! + 3!! + 4!! = 1.0787 

By following the same procedure, the index 𝐷!! can be 
computed for all the atoms (vertices) of all the compounds 
(molecular graphs) in the data set considering the hydrogen-
suppressed graphs of the compounds for carrying out further 
studies. It may be noted that consideration of hydrogen-
suppressed graph is particularly important here since we 
intend to generate structures de novo and doing that using 
hydrogen-filled graphs may pose computational bottlenecks 
as a very large number of structures are expected to be 
generated during this process. Moreover, the hydrogen-filled 
graphs can always be created from hydrogen-suppressed 
graphs if required. 

Therefore, a data set containing both active and inactive 
compounds for a biological end-point of interest has to be 
gathered first from the literature (or, experimental 
laboratories). The dataset is then divided suitably into a 
training set and a test set and the training set is used for the 
system to learn about the structural requirement that makes a 
compound active and thus it is standardized for activity 
prediction for a biological end-point of interest. 
Subsequently, the vertex index (𝐷!!) values are computed 
for the vertices of the molecular graphs representing training 
set compounds to identify ranges and the activity related 
vertices falling in the identified ranges which is required for 
using the rule based method [17, 18]. Therefore, once the 
indices are computed, they are arranged in an ascending 
order and ranges of values coming from both active and 
inactive compounds are found in the ordering. The ranges 
are termed “Active” or, “Inactive” based on a set of rules 
applied on the number of 𝐷!! index values, coming from 
active and inactive compounds, falling in the ranges. The 
rules [16, 17] used for the present study are given below: 

1. Three or, more vertex index values coming 
exclusively from active compounds and exclusively 
from inactive compounds are said to form an “active 
range” and an “inactive range”, respectively. 
However, at least three index values in a range 
should be distinct if they come from the same 
compound and at least two index values in a range 
have to be distinct if they come from different 
compounds. 

2. Some single vertex index value coming from both 
active and inactive compounds is not considered to 
form an ‘active range’ or, ‘an inactive range’ by 
itself or, along with other vertex index values unless 
two-thirds of that single vertex index comes from 
active compounds or, inactive compounds 
respectively. 

The vertex index values forming active ranges may be 
regarded as a set of features constituting “Topological 
Biophore” which are responsible for a compound to exhibit 
certain biological activities [22]. Therefore, if the index 
values for some of the vertices of the molecular graph of a 
compound fall in active ranges then those vertices may be 

regarded as representing the same or, similar features to form 
a set of features representing certain topological biophore 
which may make the compound active. However, some of 
the vertex indices for a compound may fall in inactive ranges 
too. In order to investigate that and predict activities of 
chemical compounds, another set of rules are applied on the 
number vertices of a compound falling in active and inactive 
ranges [16, 17]: 

A compound is predicted ACTIVE if all or, some of its 
vertices (atoms) fall: - 

1. Only in active ranges; or, 
2. In both active and inactive ranges and the number of 

index values falling in active ranges is greater than 
those falling in inactive ranges. 

Otherwise the compound is predicted ‘INACTIVE’. 
If the activity prediction for both the training set and the 

test set compounds are of very high percentage with no or, 
very few (acceptable) wrong predictions, the system is 
considered to be standardised for the prediction of activity 
for the given biological end-point. 

2.2. Theory of Structure Generation and Implementation 

For the purpose of designing novel bioactive compounds, 
structures are generated using the topological distance 
distribution associated with an identified activity related 
vertex (root vertex). Topological distance distribution gives 
the topological distances of all the vertices in a molecular 
graph from the root vertex and this is the key distinguishing 
idea from the generic structure generation for a given 
number of vertices. It also stems from the reasonably correct 
activity predictions obtained using topological distance-
based vertex indices [16-18, 20, 21]. The structure 
generation exercise is composed of generating rooted trees 
[14], generating cyclic compounds [15] and imposing 
topological distance restriction [16, 17]. Some relaxation has 
also been allowed in the distance criteria for generating 
structures having increased or decreased number of vertices 
representing non-hydrogen atoms and a matching criterion 
for distance distribution has been suitably changed to 
accommodate the addition, deletion and migration of the 
vertices over the tree structures with exact distance 
restriction.  
2.2.1. Tree-Based Structure Generation for a Given 
Number of Vertices 

Beyer et al. [14] have proposed an iterative algorithm to 
reverse-lexicographically generate non-isomorphic canonical 
trees for a given number of nodes. The trees generated by the 
algorithm can in general have any number of children for 
any parent node. In context of chemical structures of carbon 
atoms, only those trees are filtered and kept where the root 
has at the most four children and the rest of the nodes have at 
most three children. This restriction can later be further 
refined for hetero-atoms in accordance with their valency. 
The nodes in the tree can be chosen in a combinatorial 
manner and joined by edges to create cycles. We have 
considered the algorithm by Gibbs [15] to enumerate all the 
cycles present. From the entire cycle set, the fundamental 
cycles are then obtained in accordance with the IUPAC 
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convention of the number of rings in polycyclic systems [23] 
where the number of rings is equal to the minimum number 
of scissions required to convert the system into an open 
chain compound or structure. During this process of cycle 
introduction, duplicate structures are expected to be 
generated owing to combinatorial nature of vertex selection 
for cycle completion. Such duplicate structures are identified 
and eliminated through canonicalization in conjunction with 
unique SMILES generation [24]. 
2.2.2. Structure Generation with Distance Distribution 
Constraint 

Since, the purpose is to design novel drug molecules 
possessing better desirable activities (for the given end-
point) than the existing compounds, picking an activity 
related vertex (substructure) from the most or a highly active 
compound seems reasonable as such a substructure may be 
believed to contain the topological structural requirement for 
making the compound exhibit better activity. Hence to start 
this exercise, a vertex of the most or a highly active 
compound is chosen from an active range in the ordering of 
the 𝐷! values of the training set compounds. However, while 
picking a vertex from an active range, the composition of the 
active range such as the length of the range i.e. the number 
of index (𝐷!) values in the range, the number of compounds 
contributing to forming the range etc. may be taken into 
consideration. In the present work, the length of the active 
range has been considered to pick up the vertex. From an 
intuitive point of view, if the length of an active range is 
large and / or is formed by contribution from a large number 
of active compounds (even if not by as many compounds) 
then the range may be regarded as a “STRONG” range. 
Therefore, a vertex picked-up from a strong range as well as 
coming from the most or a highly active compound may be 
considered to be a reasonable starting point for generating 
structures de novo. The topological distance distribution 
associated with the vertex is considered to generate structures.  
2.2.2.1. Non-Isomorphic Canonical Tree Generation with 
Given Distance Distribution 

The basic idea remains the same as in case of general tree 
distribution. However, as the present work requires 
generation of trees having same distance distribution as that 
of the starting vertex, the starting level sequence that can be 
used to initiate the tree generation algorithm is the largest 
lexicographic representation corresponding to the distance 
distribution which is obtained as explained below: 

For a given distance distribution, let’s say there are 𝑎! 
vertices at distance 𝑖 where 𝑎! ≥ 1 ∀ 𝑖 such that 1 ≤ 𝑖  ≤ 𝑒, 
𝑒 being the eccentricity of the vertex from where the values 
of distance distribution is obtained. Then the 
lexicographically largest representation will be given by the 
level array [1,2… 𝑒, 𝑒, 𝑒… 𝑒

!!!! !"#!"
,… 𝑖, 𝑖… 𝑖

!!!! !"#$%
,… 2,2… 2

!!!! !"#$%
] i.e. 

first values are strictly increased up to 𝑒 starting from 1 and 
are then monotonically decreased from 𝑒 to 2. 

Additionally, as the algorithm builds trees successively, it 
suffices to use only those level sequences i.e. trees, which 
have the same distance distribution as starting vertex, to 
further generate the compound structures. 

2.2.2.2. Cycle Introduction by Adding Edges While 
Maintaining Distance Distribution 

Once again, the generic procedure outlined previously for 
cycle introduction remains valid except that in order to 
preserve the distance distribution, the edges to be introduced 
between any two vertices, say 𝑖 and 𝑗 which do not have a 
parent-child relationship between them and the levels they 
occupy with respect to the root vertex denoted by 𝑙! and 𝑙! 
respectively must satisfy the criterion 𝑙! − 𝑙! ≤ 1. 

We call it Exact matching. 
Rest of the procedure including the SMILES notation 

generation remains the same. 
2.2.3. Structure Generation with Slightly Relaxed Distance 
Distribution 

The approach taken so far (exact matching) suffers from 
the drawback that only those compound structures will be 
generated that have the same number of non-hydrogen atoms 
as the starting molecule from which the distance distribution 
was obtained. This subsection tries to tackle this drawback 
by slightly relaxing the distance distribution matching 
criteria for the trees with number of nodes deviating from the 
source or starting distribution. This deviation can either lead 
to increased or decreased number of nodes. 
2.2.3.1. Non-Isomorphic Canonical Tree Generation with 
Relaxed Distance Distribution 

The first step involves specifying the number of vertices 
(after factoring in the deviation) and then generating the 
trees. Positive deviation means required number of vertices 
is greater than that in the current tree while negative 
deviation means the required number of vertices is lesser. 
However, since exact distance distribution matching is not 
possible in this case, two variants of relaxed distribution 
matching are considered as explained below: 

Strong matching – This matching corresponds a situation 
when the distance distribution of the generated tree can be 
thought of as obtained from the source distance distribution 
by either addition or deletion of vertices at any level. 
However, simultaneous insertion or deletion of vertices is 
not allowed for a given deviation. The obtained distance 
distribution corresponds to a pruned tree of the source 
distance distribution or vice-versa depending on whether the 
deviation is negative (by deletion of vertices) or positive (by 
addition of vertices) respectively. 

Now, let 𝑛 be the number of vertex deviations allowed 
either by increasing or decreasing the number of vertices. 
Further, let 𝑐!! denote the count of vertices at level 𝑖 in the 
source distance distribution, 𝑐!

! denote the count of vertices 
at level 𝑖 in the present distance distribution and 𝑒 denote the 
maximum of the eccentricity of the source and present 
distance distribution. Then, the criteria for strong matching 
is given by: 

𝑐!! − 𝑐!
!

!

!!!

= 𝑛  
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Weak matching – In this situation the distance 
distribution matching criteria is even further relaxed in the 
sense that simultaneous addition and deletion of vertices at 
any level is allowed resulting in migration of vertices from 
one level to another. If this is allowed without a cap on the 
number of vertex migrations, then all the possible structure 
generation will be considered a match including the linear 
chain. Thus, for weak matching, number of such vertex 
migrations allowed should also be provided and in general 
should be low in order to match the source distance 
distribution as closely as possible. 

Now, let 𝑛, 𝑐!!, 𝑐!
! and 𝑒 carry the same meanings as 

defined in the case of strong matching. Further, let 𝑚 denote 
the number of vertex migrations allowed, 𝑚! denote the sum 
of vertex surplus and 𝑚! denote the sum of vertex deficit in 
the source distance distribution over the present distance 
distribution. Then, the criteria for weak matching is given 
by: 

𝑐!! − 𝑐!
!

!

!!!

= 𝑛  

and 

min 𝑚!,𝑚! = 𝑚 

where  

𝑚! =   𝑚𝑎𝑥 𝑐!! − 𝑐!
! , 0

!

!!!

 

𝑚! =   𝑚𝑖𝑛 𝑐!! − 𝑐!
! , 0

!

!!!

 

Rest of the procedure of cycle introduction, 
canonicalization and unique SMILES notation generation is 
the same as before. 

In addition to the generic implementation of the 
algorithm explained above, some user-defined parameters 
are provided in the program which may be used to restrict 
the number and size of the cycles to be created in the 2D 
structures. Similarly, other user-defined parameters, 
incorporated in the program, may be used to add multiplicity 
of bonds (double and triple bonds) between pairs of vertices 
as well as other hetero-atoms (e.g., nitrogen, oxygen, 
halogens etc.) to get complete 2D structures of the 
compounds. For investigating structural details of the 
generated compounds one can use any standard molecular 
modelling software (commercial or, those available in public 
domains) that can interpret SMILES line notation. Once the 
compounds are generated, their activities can be predicted 
using the earlier mentioned rule-based activity prediction 
method [16, 17] standardized for a biological end-point. It 
may be noted that being a molecular topology-based 
approach; the activity prediction can be done using the 
molecular graphs of the compounds where bond multiplicity 
and hetero-atom factors are not required. For other 
approaches, explicit 2D and 3D structures may be generated. 
In this way one can identify those compounds which are 
predicted active by this method from the large number of 

structures generated de novo from sub-structural 
information. 

2.3. Compound Prioritization 

Presumably, one would get a large number of de novo 
generated compounds classified active. Therefore, a scheme 
may be devised to further screen these classified active 
compounds and rank them so that one can pick a reasonable 
number of top-ranking candidates. To do that it is important 
to consider the details of the ranges where the vertex index 
values are falling since the activity of a compound is 
predicted based on the occurrences of vertex index values in 
different ranges. Two factors may be given special attention 
- one is the number of vertex index values in an active range 
(Active Range Length: 𝐴𝑅𝐿) and the other one is the number 
of compounds contributing to form the range (Active Range 
Weight: 𝐴𝑅𝑊). Intuitively too, consideration of a joint effect 
of these two factors may help prioritize predicted active 
compounds from the large number of de novo generated 
structures. To do that, we first propose a measure, Active 
Range Value (𝐴𝑅𝑉), as the algebraic sum of 𝐴𝑅𝐿 and 𝐴𝑅𝑊 
values and is given by: 
𝐴𝑅𝑉  =   (𝐴𝑅𝐿  +  𝐴𝑅𝑊)           (1) 

Thus, a range larger in length and contributed by more 
number of compounds contributed in forming the range 
would have higher 𝐴𝑅𝑉 value and such a range of higher 
𝐴𝑅𝑉 value may be regarded as a “STRONGER” range 
compared to those which have lower 𝐴𝑅𝑉 values. Now, let’s 
assume that 𝑀 out of 𝑁 vertices of a molecular graph 𝐺 
(representing a chemical compound) have fallen in different 
active ranges. If the vertices are denoted by 𝑣!, 𝑣!,… , 𝑣! one 
would get 𝑀 number of 𝐴𝑅𝑉 measures as 𝐴𝑅𝑉 𝑣! ,
𝐴𝑅𝑉 𝑣! ,… ,𝐴𝑅𝑉(𝑣!). To get a measure of the contribution 
of the vertices falling in different active ranges (i.e., 
contribution of activity related vertices) we further propose a 
Molecular Activity Index (𝑀𝐴𝐼) as: 
𝑀𝐴𝐼 𝐺 = 𝐴𝑅𝑉 𝑣!!

!!!            (2) 
    It may also be noted that while considering the length 

of an active range and the number of compounds 
contributing to form the range, some single-value that comes 
from both active and inactive compounds are considered 
since they are part of the active range according to the 
second rule of range selection mentioned earlier.  

    At the same time, there is a possibility that some of the 
vertex index values of molecular graph G may fall in 
inactive ranges too (the second rule for activity prediction) 
and that may be considered to pose a negative effect on the 
activity of the compound. For the prediction purpose, 
therefore, vertices falling in inactive ranges should be 
considered. Thus in-line with what we have defined for 
active ranges, let us define 𝐼𝑅𝐿  (Inactive Range Length) as 
the number of vertex index values in an inactive range and 
𝐼𝑅𝑊 (Inactive Range Weight) as the number of compounds 
contributing to form the range. 𝐼𝑅𝑉 (Inactive Range Value) 
is then defined as: 
𝐼𝑅𝑉  =   (𝐼𝑅𝐿  +  𝐼𝑅𝑊)            (3) 
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Now, let’s assume that 𝑀’ vertices of 𝐺 viz. 
𝑢!, 𝑢!,… , 𝑢!!  fall in inactive ranges. We, thus, propose a 
measure, Molecular De-Activity Index (𝑀𝐷𝐼) for 𝐺 and it is 
defined as: 

𝑀𝐷𝐼 𝐺 = 𝐼𝑅𝑉 𝑢!!!
!!!            (4) 

Therefore, by considering a combined effect of MAI  and 
MDI, one can prioritize the newly generated active 
compounds and curate some high-ranking compounds for 
further studies. Thus, to get a measure of combined effect of 
the vertices falling in active ranges and inactive ranges (if any) 
and prioritizing (ranking) the compounds according to their 
activities, we propose a measure, Molecular Priority Score 
(MPS), for G and it may be computed using equation (5): 
𝑀𝑃𝑆 𝐺 = 𝑀𝐴𝐼 𝐺 −𝑀𝐷𝐼 𝐺           (5) 

Understandably, a compound with higher MPS value will 
occupy a higher position in the ranking and may be prioritized 
for screening purposes. It may be noted that if a molecular 
graph doesn't have its vertex indices falling in any of the 
active or inactive ranges, then both MAI(G) and MDI(G) will 
become zero resulting in the MPS(G) value being zero. Also, 
clearly, if both MAI(G) and MDI(G) measures get the same 
value then MPS(G) value will be zero. However, prioritization 
using MPS  is not mandatory and one may wish to consider all 
the predicted active compounds for further studies.  

3. RESULTS AND DISCUSSION 

In order to investigate the performance of the proposed 
integrated drug discovery method, we have considered a 
series of 41 antitubercular Acid Alkyl Ester (AAE) 
compounds along with their experimentally determined 
Minimum Inhibitory Concentration (MIC) values [18a, 18b] 
and three known antitubercular compounds – Isoniazid, 
Pyrazinamide and Ethionamide. We report here the results 
obtained for activity prediction using vertex index 𝐷!! and 
the rule based method [16, 17], prioritization of active 
compounds using MPS and combinatorial generation of 
structures from substructural information of activity related 
vertices for the AAE series of compounds. The number of 
active and inactive compounds in the training set (and test 
set) for studies with AAE series have been kept balanced for 
getting unbiased estimates. We also report here the structure 

generation studies with the three above mentioned 
antitubercular drugs using relaxed distance distribution 
algorithm in drug resistance scenario. 

3.1. Studies with Acid Alkyl Ester (AAE) Series of 
Compounds 

The 41 compounds of the AAE series have been divided 
into two groups - active compounds and inactive compounds 
- using a cut-off MIC value of 3.9 µM. A compound having 
MIC value ≤ 3.9 is considered active leading to almost equal 
number of active and inactive molecules (15 and 14, 
respectively) in the training set of 29 molecules. The 
remaining 12 compounds, 6 active and 6 inactive, have been 
kept as a test set. The activity prediction results along with 
their MPS values for these training set and the test set 
compounds are given in Table 1.  

At first, the 𝐷!! index values have been computed for all 
the atoms (vertices) from the hydrogen-suppressed molecular 
graphs of all the 41 AAE compounds (molecular graphs). 
However, 𝐷!! index values computed for the training set 
compounds have only been arranged in an ascending order to 
identify active and inactive ranges in the ordering. The 
ordering of these 𝐷!! index values is given as a 
supplementary material in Supplementary File 1, along with 
the details of Compound No. (Atom No.), the Atom Symbol 
and the Activity Type (+/-) of the molecule from which the 
𝐷!! indices were obtained. A few sample ranges identified 
in the ordering have been shown in Table 2. It may be noted 
that there are certain regions in the ordering where active or, 
inactive ranges are not found since those portions don’t 
satisfy the rules for forming a range (method section). It may 
also be noted that D-4 is not a unique substructural descriptor 
i.e., more than one substructure may have the same D-4 index 
value. However, the same value (e.g., 2.233137 in Table 2) 
mostly represent the same or, very similar substructures and 
it helps bring index values of these substructures coming 
from the same or, different compounds within an identified 
range. Both these cases are illustrated in Figures 2 and 3.  
The distance distribution in all these cases is (1, 2, 3, 3, 1, 1, 
2, 2, 1, 2, 1, 1) and hence yields the same vertex index value 
of 2.233137 (Serial No. 10, 11, 12 in Table 2). 

 

Table 1. Experimentally determined MIC values, assigned and predicted activities and Molecular Priority Score (MPS) of 41 acid 
alkyl ester derivatives divided into 29 training set and 12 test set compounds. 

Sr. No. 
Compound No. Experimental MIC Value (µM) Activity* MPS** 

Ref. 18a (18b) As in Ref. 18a, 18b Assigned Predicted Value 

Training Set 

1 23(30) 0.59 + + 190 

2 4(9) 0.73 + + 178 

3 9(14) 0.98 + + 210 

4 22(29) 1.4 + + 92 

5 1(6) 1.6 + + 174 

(Table 1) Contd… 
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Sr. No. 
Compound No. Experimental MIC Value (µM) Activity* MPS** 

Ref. 18a (18b) As in Ref. 18a, 18b Assigned Predicted Value 

6 24(31) 1.6 + # 0 

7 18(25) 1.7 + + 200 

8 26(33) 2.0 + + 85 

9 33(41) 2.0 + + 165 

10 27(35) 2.5 + + 190 

11 10(15) 3.1 + + 88 

12 8(13) 3.5 + + 173 

13 19(26) 3.7 + + 51 

14 28(36) 3.8 + + 183 

15 6(11) 3.9 + + 174 

16 7(12) 5.3 - - -43 

17 16(22) 6.3 - - -169 

18 12(17) 6.5 - - -132 

19 20(27) 7.5 - - -132 

20 21(28) 7.8 - - -132 

21 25(32) 7.9 - - 0 

22 36(44) 8.3 - - -108 

23 3(8) 11.7 - - -59 

24 29(37) 15.2 - - -97 

25 17(23) 17.3 - - -44 

26 30(38) >128 - - -84 

27 31(39) >128 - - -64 

28 39(47) >128 - - -56 

29 41(49) >128 - - -65 

Test Set 

1 14(20) 0.96 + + 210 

2 38(46) 1.1 + + 27 

3 32(40) 1.8 + + 112 

4 11(16) 2.0 + + 164 

5 13(18) 2.3 +     -   # -132 

6 5(10) 3.9 + + 32 

7 15(21) 5.4 - - -65 

8 37(45) 7.3 - - -29 

9 34(42) 7.9 - - -10 

10 35(43) 10.9 - - -36 

11 40(48) 14.2 -     +  # 178 

12 2(7) 15.5 - - -59 

* (+) means active, (-) means inactive and (#) means incorrect prediction. 
Compounds with MIC ≤ 3.9 µM have been considered as active compounds. 
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Table 2. Examples of active and inactive range formation in the ordering of  𝐷!! values taken from Supplementary File 1. 

Serial No. 𝐷!! Index Value Compound No. (Atom No.) 
Activity* and Range Type 

Active Range 

1 2.232499 33 (3) + 

2 2.232590 4 (3) + 

3 2.232605 8 (14) + 

4 2.232605 10 (15) + 

5 2.232610 28 (3) + 

6 2.232630 9 (3) + 

7 2.232639 18 (3) + 

8 2.232985 23 (3) + 

9 2.232985 27 (3) + 

10 2.233137 9 (16) + 

11 2.233137 22 (13) + 

12 2.233137 22 (15) + 

13 2.233220 33 (11) + 

14 2.233220 33 (13) + 

15 2.233290 1 (3) + 

   Inactive Range 

1 1.158398 29 (24) - 

2 1.161405 7 (19) - 

3 1.161490 31 (9) - 

4 1.161490 31 (16) - 

5 1.161606 30 (9) - 

6 1.161606 30 (10) - 

7 1.161666 12 (18) - 

8 1.161666 20 (18) - 

9 1.161666 21 (18) - 

   Not a Range 

1 2.163005 1(11) + 

2 2.163797 9(14) + 

3 2.166911 17(20) - 

4 2.166997 6(14) + 

5 2.167055 30(18) - 

6 2.167172 1(10) + 

7 2.168772 17(19) - 

* (+) sign corresponds to index value coming from active compound. 
(-) sign corresponds to index value coming from inactive compound. 
 
 
Once the active and inactive ranges have been identified in 
the ordering of the AAE training set compounds, the anti-
tubercular activities (active or, inactive) of the training set 
and the test set compounds are predicted using the prescribed 

activity prediction rules (method section). For the prediction 
of activity of a compound, we have considered those vertices 
of the corresponding molecular graph which have fallen in 
active and inactive ranges. 
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Fig. (2). Compound No. 9 along with the rooted vertex (Vertex No. 
16) and the corresponding rooted tree. 

 
For illustration purpose, the information about the 

vertices of compound no. 11 falling in active and inactive 
ranges (and those not falling in any range) and activity 
prediction is given in Table 3. It is seen that 13 out of 22 

vertices of compound no. 11 have fallen in the active ranges, 
8 of them are not falling in any of the ranges while only one 
of the vertices is falling in an inactive range. Hence 
according to the rules formulated for activity prediction 

Table 3. Details of vertex along with their range information for activity prediction of Compound No. 11. 

Serial No. 𝐷!! value Falling in the Range 
No. of Values in the Range: 

Active Inactive 

1 2.302931 2.302758 - 2.303630 10 0 

2 3.236536 3.236531 - 3.237360 3 0 

3 2.232763 2.232499 - 2.233290 15 0 

4 2.238963 2.238831 - 2.239319 9 0 

5 3.287517 3.287385 - 3.287873 9 0 

6 3.232793 3.232685 - 3.232990 9 0 

7 2.259333 Not falling in a range - - 

8 2.263418 Not falling in a range - - 

9 1.177774 1.177742 - 1.177889 7 0 

10 2.224022 2.223990 - 2.224137 7 0 

11 2.100442 2.100422 - 2.100514 5 0 

12 3.257709 3.249896 - 3.271529 0 7 

13 2.302350 Not falling in a range - - 

14 3.237043 3.236531 - 3.237360 3 0 

15 2.295105 Not falling in a range - - 

16 3.237043 3.236531 - 3.237360 3 0 

17 2.302350 Not falling in a range - - 

18 2.167172 Not falling in a range - - 

19 2.167172 Not falling in a range - - 

20 1.102877 1.098767 - 1.104672 5 0 

21 1.102877 1.098767 - 1.104672 5 0 

22 1.088766 Not falling in a range - - 

Prediction: Compound No. 11 is ACTIVE. 

 
Fig. (3). Compound No. 22 along with the root vertices (Vertex No. 
13 and 15) and the corresponding rooted tree. 



10     Current Computer-Aided Drug Design, 2018, Vol. 14, No. 0 Raychaudhury et al. 

(method section), this compound is predicted active and this 
prediction agrees with the observed MIC value of the 
compound (Table 1). 

It can be seen that successful prediction has been 
obtained for 28 out of 29 compounds of the training set 
(96.55%) and 10 out of 12 compounds of the test set 
(83.33%). Clearly the number (and percentage) of correct 
predictions for both training set and the test set are high. 
Thus, the activity prediction system may be considered to be 
standardized for prediction of the given anti-tubercular 
activity of unknown compounds. Hence, the prediction of 
anti-tubercular activities of the combinatorially generated 
compounds may be done using this standardised system and 
some predicted active compounds may be curated for further 
studies related to drug discovery. 

To further assess the performance of the activity 
prediction method [16, 17] for the 41 anti-tubercular AAE 
compounds, we randomly selected 10,000 combinations of 
training and test sets, with the number of compounds in 
training set varying between 26 to 32 molecules from the 
total compound set. The training set lengths were not kept 
too high or too low to prevent test set from becoming too 
small or the training set itself losing significant structural 
information required for training. Moreover, as the number 
of iterations was quite large, an increment of 2 was 
considered over previous number of molecules in the 
training set. The threshold MIC values are suitably chosen to 
keep the number of active and inactive compounds in the 
training sets almost equal to maintain the class balance as 
much as possible. The validation parameters - Accuracy, 
Sensitivity and Specificity - were evaluated for the test set of 
these combinations. The mean of the validation parameters 
(with their standard error of mean error bars) are shown in 
Fig. (4). 

It is seen that the validation parameters show an 
increasing trend as the training set length is increased and 
more and more instances are included to represent the data to 
learn from. It is understandable that the validation metrics 
will vary greatly based on the training set in consideration 
and the method will perform poorly when these are not a 
proper representation of the total set or the unseen data. The 
molecule details of these 41 compounds have been obtained 
from the ‘.MOL’ file given in Supplementary File 2 and the 
Compound No. given in Table 1 and Table 2 and Atom No. 
in Table 2 are derived and used as depicted in the 
corresponding MOL files. The third line in the MOL file for 
each molecule i.e. the comment line has been populated by 
the MIC value of the corresponding compound. The 
structures of these 41 AAE compounds are given as a 
supplementary material in Supplementary File 3 with the 
same compound numbering as used in Supplementary File 1.  
3.1.1. Identification of Vertex and Structure Generation 

Once the system is standardized for activity prediction, 
an activity related vertex is identified from a strong range for 
generating structures combinatorially. One of the purposes of 
the present structure generation work from sub-structural 
information is to get newly designed bioactive compounds 
having a diverse topological architecture / scaffold. We 
report below the results of the structure generation studies 

for the AAE series of compounds using distance distribution 
information associated with an activity related vertex 
identified from a strong active range.  
3.1.1.1. Structure Generation Using Distance Distribution 
Information 

As discussed in the method section, the vertex which lies 
in a “strong” range and belongs to a comparatively highly 
active compound in the available set of molecules is believed 
to contain structural information that may be required to 

 
Fig. (4). Plots of (a) Accuracy (b) Sensitivity (c) Specificity against 
the number of compounds in training set. 
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make a compound highly active. Pursuant to this, to 
investigate the possibility of designing a novel bioactive 
compound through the proposed structure generation 
techniques we have considered two vertices from “strong” 
ranges. The compound numbers used here correspond to that 
given in Table 1. 

For the first structure generation exercise, we have 
selected vertex No. 15 in the molecular graph representing 
compound No. 22 for generating structures using the 
distance distribution associated with the vertex since it 
belongs to a fairly active compound (MIC = 1.4  µM) and 

falls in a strong active range. The details of this strong active 
range is given in Table 4. 

The compound No. 22 along with its molecular graph 
and the chosen structure generation vertex (root vertex) is 
given in Fig. (5A). The distance distribution associated with 
this vertex (Vertex No. 15) starting with distance 0 is (1, 2, 
3, 3, 1, 1, 2, 2, 1, 2, 1, 1). 

As described in the method section, a graph theoretical 
algorithm [14] has been used to generate all possible non-
isomorphic rooted trees using the distance distribution. A 
sample rooted tree is shown in Fig. (5B) with the 

Table 4. Details of the range in which vertex 15, in the molecular graph of compound no. 22, lies in. 

Serial No. 𝐷!! index value Compound No. (Atom No.) Activity 

1 2.232499 33 (3) + 

2 2.232590 4 (3) + 

3 2.232605 8 (14) + 

4 2.232605 10 (15) + 

5 2.232610 28 (3) + 

6 2.232630 9 (3) + 

7 2.232639 18 (3) + 

8 2.232985 23 (3) + 

9 2.232985 27 (3) + 

10 2.233137 9 (16) + 

11 2.233137 22 (13) + 

12 2.233137 22 (15) + 

13 2.233220 33 (11) + 

14 2.233220 33 (13) + 

15 2.233290 1 (3) + 

(+) means active, (-) means inactive. 
 

 
Fig. (5). (A) Compound No. 22, its hydrogen-suppressed molecular graph and the root vertex (vertex no. 15). (B) Sample rooted tree 
structure generated. In the tree, the root vertex is labelled as vertex 1. 
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corresponding distance distribution which gets generated. 
The SMILES notations of the generated rooted trees are 
given as a supplementary material in Supplementary File 4 
where the one corresponding to Fig. (5B) is the 3rd 
SMILES notation. The root vertex about which the distance 
distribution gets matched is also mentioned alongside. 

Once the rooted trees are generated, the computer 
program generates structures which contain cycles to 
generate the topology of the structural formula of a variety of 
chemical compound while still maintaining the distance 
distribution. At this step, one can use user-defined 
parameters to decide the number of cycles to be created and 
the size of the cycles too. In the present study, we have 
chosen to generate structures containing two cycles, having a 
number of sides either 5 or 6, to investigate whether we are 
able to generate any other active compound present in the 
studied dataset.  

The SMILES notations of the structures generated with 
the criteria are given in Supplementary File 5. As in the 
previous case, the root vertex about which the distance 
distribution gets matched is also mentioned alongside. It 
has been found that the generated structures contain one 
such structure (Fig. 6A) corresponding to the SMILES 
notation no. 71 in the Supplementary File 5 and the 
topology of this structure matches with that of compound 
No. 9 (MIC = 0.98) of the training set and compound No. 
14 (MIC = 0.96) of the test set. Clearly, the method has 
been able to generate structures of those compounds which 

are more active from the sub-structural information of a 
less active compound. 

To further substantiate the capability of this method to 
generate structure of active compounds, we have carried out 
another structure generation exercise using distance 
distribution associated with a vertex of a different active 
compound. This time we have considered vertex No. 1 of 
compound No. 1 (MIC = 1.6) as depicted in Fig. (6B) to start 
structure generation, the range details of which are provided 
in Table 5. 

In this case too, the topology of one of the generated 
structures (Fig. 6C) matches with that of compound No. 32 
(MIC = 1.8) belonging to the test set. Here also the method 
has helped generate structure of an almost equally active 
compound. The ability of the method to generate structure of 
a test set compounds starting from that of a training set 
compound seems to indicate that the proposed method may 
be able to generate many more novel structures of highly 
active compounds. Additionally, the current structure 
generation exemplifies the case where an existing ring got 
disassembled and some of the vertices got moved resulting 
in a different scaffold. 

Subsequently, we have investigated structure generation 
for several other acid alkyl ester compounds that we have 
taken for the present study. The details of starting structures 
and generated structures are given in Table 6. The terms 
‘Top position Molecule’ refers to the activity position of the  
 

 
Fig. (6). (A) One of the cyclic structures generated considering vertex 15 of Compound 22 (Table 1) as root vertex and with same topology 
as the structures of existing compounds 9 and 14 (Table 1). (B) Compound No. 1, its hydrogen-suppressed molecular graph and the root 
vertex. (C) Cyclic structure generated from Compound 1 Vertex 1 and its topological equivalence to existing molecular structures. 
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molecule with respect to their sorted activity values e.g. Top 
position Molecule being 3 means the corresponding 
molecule is the 3rd most active molecule.  Similarly, ‘Top 
position Atom’ refers to the position of the atom with respect 
to the length of the active range in which the atom lies e.g. 
Top position Atom being 7 means once a molecule has been 
considered (of any given position, in this case 3) the given 
atom in this molecule has the 7th largest length of active 
range among all the atoms of this molecule. Multiple values 
on more than one line corresponding to the same Top 
Position Molecule / Top position Atom represent that these 
starting structures representing tuples i.e. (Molecule No., 
Atom No.) tie for the same position and either of them or all 
of them can be used for structure generation as desired. 
When multiple (Molecule No., Atom No.) pairs are 
mentioned on the same line then it means that either of these 
starting structures representing tuples are leading to the same 
set of generated structures. 

It is interesting to note that all the active structures 
generated by the proposed structure generation technique, 
given in Table 6, have also been predicted active by the rule 

based method used for activity prediction in the present 
study (Table 1). 

3.2. Studies with Existing Antitubercular Drugs – Drug 
Resistance Problem 

For the present study, we have considered three known 
antitubercular drugs Isoniazid, Pyrazinamide and 
Ethionamide to demonstrate the application potential of the 
relaxed distance distribution algorithm incorporated in the 
proposed integrated method. Some of these three drugs can 
be resistant to some TB strains while others may not. This 
study demonstrates how the structure of a different 
compound which is not resistant may be obtained from that 
of a drug which is resistant. 
3.2.1. Structure Generation with Relaxed Distance 
Distribution Constraint 

As proposed in the method section, slight relaxation on 
the distance distribution method, termed as ‘strong 
matching’ and ‘weak matching’, can be used to generate 
structures with either increased or decreased number of 

Table 5. Details of the range in which vertex 1, in the molecular graph of compound no. 1, lies in. 

Serial No. 𝐷!! Index Value Compound No. (Atom No.) Activity 

1 2.302758 4 (1) + 

2 2.302777 28 (1) + 

3 2.302797 9 (1) + 

4 2.302807 18 (1) + 

5 2.303152 23 (1) + 

6 2.303152 27 (1) + 

7 2.303194 33 (1) + 

8 2.303458 1 (1) + 

9 2.303569 8 (1) + 

10 2.303630 6 (1) + 

(+) means active, (-) means inactive. 
 

Table 6. The starting and generated structures from the Acid Alkyl Ester (AAE) data set. 

Top Position Starting Structure No. Generated Structures (Molecule No.) 

Molecule / Atom (Molecule, Atom) In training set In test set 

1 / 1 (23, 3) 27  

3 / 1 (9, 3)  14 

(9, 16) 22 14 

3 / 7 (9, 2)  14 

(9, 15), (9, 18) 19 14 

4 / 1 (22, 13), (22, 15) 9 14 

5 / 2 (1, 1)  32 
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vertices while trying to maintain the topological properties of 
the starting structure. To investigate the usefulness of this 
“relaxed distance” based structure generation algorithm, we 
have applied this algorithm to address drug discovery 
problem in drug resistance scenario considering three known 
TB drugs to find out whether this algorithm can help 
generate structure of a non-resistant antitubercular drug from 
a known Multidrug Resistant first line TB drug. Thus, we 
have generated structures by picking an atom from 
“Isoniazid” (containing 10 non-hydrogen atoms) a known 
first line anti-tubercular drug [25] which is also considered 
as one of the drugs in categorizing Multiple Drug Resistant 
(MDR) / Extensively Drug Resistant (XDR) tuberculosis 
(Center for Disease Control and prevention (CDC). 
https://www.cdc.gov/tb). The vertex picked up as the root / 
starting vertex for structure generation is known to take part 
in making “Isoniazid” active [26] and therefore may be 
regarded as an activity related vertex (substructure) to be 
considered for structure generation. Important steps of this 
structure generation exercise are described in Fig. (7A-C). 
 

 
Fig. (7). (A) Isoniazid and its molecular graph with starting (root) 
vertex for structure generation. (B) Structure generated from Isoni-
azid with decreased node count of 9 and the resembling compound 
Pyrazinamide. (C) Structure generated from Isoniazid with in-
creased node count of 11 and the resembling compound Ethiona-
mide. 
 

In the current study, the deviations considered in the 
number of vertices in the structures to be generated are -1 
and +1 corresponding to 9 and 11 as the vertex count in the 
structures generated. Moreover, the structure generation was 
performed with both strong matching and the weak matching 
approaches with the number of vertex migration allowed in 
case of weak matching being 1. 

Now, starting with the activity related (root) vertex as 
shown in Fig. (7A), one of the structures generated with 9  
vertices corresponds to another anti-TB drug, Pyrazinamide 
[27] and the structure (Fig. 7B) was obtained with both 
strong and weak matching approaches. 

Similarly, when the structures are generated with 11 
vertices with weak matching criteria and the number of 
vertex migrations allowed is 1, one of the structures thus 
generated resembles that of another antibiotic, Ethionamide, 
a potent antitubercular drug [26]. Although Ethionamide has 
become a resistant TB drug, some research on this 
compound seems to indicate that this drug’s resistance to TB 
may be reversed [26]. In that case it is possible that 
Ethionamide will resurface as a resistance free potent 
antitubercular compound. It is to be noted, however, that this 
structure cannot be generated with strong matching criteria. 
The topological equivalence in the structure of Ethionamide 
and the generated structure are shown in Fig. 7C. 

Therefore, it is apparent from the results obtained for 
structure generation using “relaxed distance” criteria that this 
method can add value to de novo structure generation 
exercise in search of potent drug molecules. Although the 
study performed here has been done for molecules having 
small and relatively simpler structures, the relaxed matching 
both in the strong and weak sense shows a promising way of 
extending the distance distribution based molecule design 
approach to search for wider range of drug candidates, 
particularly in drug resistant scenario such as that for MDR / 
XDR tuberculosis. It may also me noted that we have used 
hydrogen suppressed graphs for the molecular structures in 
our activity prediction. Using hydrogen filled graph allows 
us to explore more topologies and potentially improves the 
power of the method. 

CONCLUSION 

The objective of the present study is to develop an 
integrated method for drug discovery using combinatorial 
generation of compounds coupled with activity prediction 
using substructural topological information followed by 
screening of potential drug candidates. To evaluate the 
performances of different modules / functionalities of the 
computer program / proposed method, a series of 41 Acid 
Alkyl Ester (AAE) derivatives and three known 
antitubercular drugs – Isoniazid, Pyrazinamide and 
Ethionamide - have been considered since discovery of 
potent antitubercular drug is of special interest globally. The 
proposed method has been found to predict activities of AAE 
series of compounds with high percentage of success rate 
and the newly developed MPS values have been found 
useful for prioritization and screening of active AAE 
derivatives. The method has also been successfully used to 
generate structures of active AAE compounds from 
topological distance information of activity related vertices 
(substructures) coming from other active compounds of this 
series. Activity-linked combinatorial structure generation 
holds a key part of the proposed method since this method is 
meant for designing / discovering novel drug candidates 
having diverse scaffold / topological architecture using 
single substructural (vertex) index. In the process, it also 
links the method with two key areas of drug discovery 
research - scaffold hopping and iQSAR approaches. Also, 
successful standardization of the activity prediction module 
indicates that it may help screen potential active compound 
from the combinatorially generated structures. 
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Therefore, having different algorithms for discovering 
novel drug molecules, the proposed topological substructural 
information based activity linked drug discovery method 
may find useful application in discovering novel 
antitubercular drug candidates including handling drug 
resistance problem. As a part of future work, it would be 
interesting to investigate whether inclusion of some 
quantitative activity prediction method, ADME/TOX filters 
and more user defined parameters can help improve the 
system’s capability of discovering novel drug candidates. 
Also, additional rooted tree generation algorithms may be 
developed for combinatorial structure generation a. The 
rooted trees can also be used for searching databases to find 
new lead compounds. Since the goal is to build a useful tool 
for the discovery of novel and effective therapeutic 
candidates to combat tuberculosis, the results obtained so far 
seems to be quite encouraging for going forward in that 
direction and may even be helpful for discovering novel 
therapeutic agents for the treatment of various other diseases 
as well. 

ETHICS APPROVAL AND CONSENT TO PARTICI-
PATE 

Not applicable. 

HUMAN AND ANIMAL RIGHTS 

No Animals/Humans were used for studies that are the 
basis of this research.  

CONSENT FOR PUBLICATION 

Not applicable. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest, financial or 
otherwise.  

ACKNOWLEDGEMENTS 

We would like to thank the Department of Biotechnology 
(DBT), Government of India, New Delhi, for financial 
support. All the authors have contributed equally 

REFERENCES 
[1] Ruddigkeit, L.; Van Deursen, R.; Blum, L. C.; Reymond, J.-L., 

Enumeration of 166 billion organic small molecules in the chemi-
cal universe database GDB-17. J. Chem. Inf. model. 2012, 52, 
2864-2875. 

[2] Hansch, C.; Sammes, P. G.; Taylor, J. B.; Ramsden, C., Eds., Com-
prehensive Medicinal Chemistry: Quantitative Drug Design, Vol. 
4; Pergamon Press: New York, 1990. 

[3] Kier, L. B.; Hall, L. H., Molecular Connectivity in Structure-
Activity Analysis; Research Studies: Chichester, 1986. 

[4] Basak, S.C.; Restrepo, G.; Villaveces, J. L. Eds. Advances in Math-
ematical Chemistry and Applications, 1st Ed.; Vol 1-2 (Revised 
Edition); Elsevier 2015. 

[5] Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J., Docking and 
scoring in virtual screening for drug discovery: methods and appli-
cations. Nat. Rev. Drug Discov., 2004, 3, 935-949. 

[6] Cramer, R. D., Topomer CoMFA: A design methodology for rapid 
lead optimization, J. Med. Chem., 2003, 46, 374-389. 

[7] Sun, H.; Tawa, G.; Wallqvist, A., Classification of scaffold-
hopping approaches. Drug Discov. Today, 2012, 17, 310-324. 

[8] Prathipati, P.; Ma, N. L.; Keller, T. H., Global bayesian models for 
the prioritization of antitubercular agents. J. Chem. Inf. Model., 
2008, 48, 2362-2370.  

[9] Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S., Multidrug resistance: 
An emerging crisis. Interdisciplinary Perspectives on Infectious 
Diseases 2014, http://dx.doi.org/10.1155/2014/541340. 

[10] Gálvez, J.; García-Domenech, R., On the contribution of molecular 
topology to drug design and discovery. Curr. Comput.-Aided Drug 
Des., 2010, 6, 252-268. 

[11] Gugisch, R.; Kerber, A.; Kohnert, A.; Laue, R.; Meringer, M.; 
Rücker, C.; Wassermann, A., MOLGEN 5.0, A molecular structure 
generator. Advances in mathematical chemistry and applications 
2014, 1, 113-138. 

[12] Faulon, J.-L.; Bender, A., Handbook of chemoinformatics algo-
rithms. CRC press: Boca Raton, 2010. 

[13] Wong, W. W.; Burkowski, F. J., A constructive approach for dis-
covering new drug leads: Using a kernel methodology for the in-
verse-QSAR problem. J. Cheminf., 2009, 1, 4. 

[14] Beyer, T.; Hedetniemi, S. M., Constant time generation of rooted 
trees. SIAM Journal on Computing 1980, 9, 706-712. 

[15] Gibbs, N. E., A cycle generation algorithm for finite undirected 
linear graphs. Journal of the ACM (JACM) 1969, 16, 564-568. 

[16] Klopman, G.; Raychaudhury, C., Vertex indexes of molecular 
graphs in structure-activity relationships: a study of the convulsant-
anticonvulsant activity of barbiturates and the carcinogenicity of 
unsubstituted polycyclic aromatic hydrocarbons. J. Chem. Inf. 
Comput. Sci., 1990, 30, 12-19. 

[17] Raychaudhury, C.; Pal, D., Use of vertex index in structure-activity 
analysis and design of molecules. Curr. Comput.-Aided Drug Des., 
2012, 8, 128-134. 

[18] Raychaudhury, C.; Kandel, D. D.; Pal, D., Role of vertex index in 
substructure identification and activity prediction: a study on an-
titubercular activity of a series of acid alkyl ester derivatives. Cro-
at. Chem. Acta, 2014, 87, 39-47; (b) Pieroni, M.: Lilienkampf, A.; 
Wan, B.; Wang, Y.; Franzblau, S. G.; Kozikowski, A. P., Synthe-
sis, biological evaluation, and structure-activity relationships for 5-
[(E)-2-arylethenyl]-3-isoxazolecarboxylic acid alkyl ester deriva-
tives as valuable antitubercular chemotypes. J. Med. Chem., 2009, 
52, 6287-6296.  

[19] Günther, G., Multidrug-resistant and extensively drug-resistant 
tuberculosis: A review of current concepts and future challenges. 
Clin. Med., 2014, 14, 279-285.  

[20] Raychaudhury, C.; Klopman, G., New Vertex Indices and their 
Applications in Evaluating Antileukemic Activity of 9‐
Anilinoacridines and the Activity of 2′, 3′‐Dideoxy‐Nuclosides 
Against HIV. Bull. Soc. Chim. Belg., 1990, 99, 255-264. 

[21] Raychaudhury, C.; Dey, I.; Bag, P.; Biswas, G.; Das, B.; Roy, P.; 
Banerjee, A., Use of a rule based graph-theoretical system in eval-
uating the activity of a class of nucleoside analogues against human 
immunodeficiency virus. Arzneim.-Forsch. / Drug Res., 1993, 43, 
1122-1125. 

[22] Kandel, D. D.; Raychaudhury, C.; Pal, D., Two new atom centered 
fragment descriptors and scoring function enhance classification of 
antibacterial activity. J. Mol. Model., 2014, 20, 2164. 

[23] Moss, G., Extension and revision of the von Baeyer system for 
naming polycyclic compounds (including bicyclic compounds). 
Pure Appl. Chem., 1999, 71, 513-529. 

[24] Weininger, D.; Weininger, A.; Weininger, J. L., SMILES. 2. Algo-
rithm for generation of unique SMILES notation. J. Chem. Inf. 
Comput. Sci., 1989, 29, 97-101. 

[25] Zumla, A.; Nahid, P.; Cole, S. T., Advances in the development of 
new tuberculosis drugs and treatment regimens. Nat. Rev. Drug 
Discov., 2013, 12, 388-404. 

[26] Timmins, G. S.; Deretic, V., Mechanisms of action of isoniazid. 
Mol. Microbiol., 2006, 62, 1220-1227. 

[27] DrugBank. https://www.drugbank.ca/drugs/DB00339 (Accessed on 
October 12, 2017). 

 

DISCLAIMER: The above article has been published in Epub (ahead of print) on the basis of the materials provided by the 
author. The Editorial Department reserves the right to make minor modifications for further improvement of the manuscript. 

 


